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Abstract—An analysis is made of double-pipe heat exchangers under a thermally developing countercurrent
flow condition. A lumped—differential mixed formulation is employed, by radially lumping the temperature
field in the outer channel, which results in a more involved boundary condition for the inner differential
system, involving the axially varying outer channel bulk temperature. The generalized integral transform
technique is utilized to provide a reliable and straightforward analytical solution to this class of problems.
Numerical results for heat transfer quantities are presented in terms of the dimensionless governing
parameters along the thermal entry region, allowing for critical comparisons against the concurrent flow
situation, limiting solutions and engineering-type correlations.

INTRODUCTION

DoOUBLE-PIPE heat exchangers are commonly used
devices in thermal engineering practice, especially in
connection with relatively small exchange area
requirements, pressurized systems and laboratory set-
ups [1], due to their simple construction and main-
tenance characteristics. Stein [2, 3] appears to be the
first investigator to formulate such a class of problems
and attempt an analytical solution to the two govern-
ing energy equations coupled at the boundary con-
ditions. For the concurrent laminar flow situation,
under a hydrodynamically fully developed condition,
a number of contributions followed [4-7] that
employed eigenfunction expansion-type approaches
and, particularly after the advancement of an auto-
matic and reliable solution technique for the related
eigenvalue problem [7], filled the gap between Stein’s
pioneering work and the present need for accurate
reference results in heat exchanger design. For coun-
terflow situations, however, the utilization of such
approaches is not a trivial matter, due to the more
involved auxiliary eigenvalue problem which results
from the coupled nature between inlet and exit stream
temperatures, as demonstrated through the efforts of
Nunge and Gill [8]). Therefore, an alternative sim-
plified formulation was proposed by Stein and Sastri
[9], which radially lumps the temperature distribution
in the outer annular channel and maintains the partial
differential formulation for the inner tube. As a result,
the interface condition incorporates the bulk tem-
perature of the outer channel, providing a more
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general boundary condition for the single partial
differential equation that governs the inner tube
temperature distribution. An approximate solution
for this formulation was then obtained, based on the
Laplace transform technique, and applied in sub-
sequent developments [10, 11] for both concurrent
and countercurrent flow configurations. It was not
until quite recently [12] that applicability limits for
this simplified formulation were established, in terms
of the governing dimensionless parameters, through
a critical comparison with the benchmark results
available for concurrent flow [7] along the thermal
entry region. Also in ref. {12], the exact analytical
solution for the mixed lumped—differential formula-
tion of concurrent flow double-pipe heat exchangers
is provided, by extending the ideas in the generalized
integral transform technique [13-19], as applied to a
priori non-transformable diffusion/convection prob-
lems. In the present contribution, the formalism
in ref. [12] is extended for the counterflow situa-
tion, allowing for the establishment of heat transfer
results in a wide range of governing parameters
such as exchanger length, heat capacity flow rate ratio,
relative thermal resistance of the interface and dimen-
sionless axial coordinate. Numerical results for the
quantities of practical interest are then presented,
including bulk temperatures, Nusselt numbers and
exchanger effectiveness. Since a very limited number
of works were previously concerned with counter-
current flow, we take advantage of the present reliable
approach to examine more carefully different aspects
related to this important configuration, such as com-
parisons with concurrent flow results, with limiting
situations of prescribed wall temperature and heat
flux, and with an engineering-type correlation for
the heat transfer coefficient in double-pipe heat
exchangers [20].
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a, inner and outer tube radii,
k=12

b interfacial wall thickness

Cp specific heats of inner and outer fluids,
k=12

k, thermal conductivities of inner and outer
fluids, k =1,2

L*  exchanger length, dimensional

n1, mass flow rates, k = 1,2

R dimensionless radial coordinate

T.  temperature distributions, dimensional,
k=1,2

T,  inlet temperatures, dimensional, k

U velocity profiles, dimensional, k& =

#,  average velocities, k = 1,2

U(R) velocity profiles, dimensionless,
k=1.2

xory transversal coordinate, dimensional

= axial coordinate, dimensional

Z axial coordinate, dimensionless.

=12
1,2

NOMENCLATURE

Greek symbols
% thermal diffusivities, k = 1.2
0.(R,7) temperature distributions,
dimensionless, k = 1, 2

0...(Z) bulk temperatures, dimensionless,
k=12

A eigenvalues of matrix 4, equation (14b)

i eigenvalues of Sturm—Liouville problem,

equations (7) §
p. densities, & = 1, 2.

Subscripts
av  average
1 inner stream
2 outer stream
w interfacial wall :
i,j  order of eigenvalue. t

Superscript
integral transformed quantity.

ANALYSIS

In order to demonstrate the lumping procedure
at the outer annular channel, we start from the
fully differential formulation for a double-pipe heat
exchanger in dimensionless form [7, 12], written for a
counterflow configuration. Laminar flow is assumed
at both tube and shell sides for derivation purposes,
but the formulation to be obtained is directly appli-
cable to turbulent flow at the annular region. Accord-
ing to the coordinate system presented in Fig. 1. the
problem formulation, assuming constant physical
properties and hydrodynamically fully developed
flow, is given by:

Inner tube

0, (RZ) ¢
RU,(R) D2 _

Y4 'ﬁz[ oR

80,(R. Z)]

O0<R<l, O0<Z<gL (la)

insulated

N

B ARALAARREARIANRRARR

xpx) g aa) CHANNEL @
¥ 4
o .

Outer annular channel

KH 80,(R, Z)
- T=RA=RHU(R) =225
_ 2 R = ren R 2)
oR [(1 RU=R="%r |
O<R<l, 0€Z<L (b
with inlet conditions at opposite ends
0, (R0)=0, 0,(RLy=1. 0<R<LT (ic,d}
and boundary conditions
80,(0.72) 20,0, 2) :
S = Sl L = LZ < le.f
OR . 3R 0. 0<Z<L  (leD)
o (1, Z 60, (1, Z
P ) 0 () =0, 0<Z<L (lg
R &R

Fi16. 1. Geometry and coordinate system for double-pipe heat exchanger analysis.
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20,(1,2)

K &R

+6,(1,2)-0,(1,2)=0, 0<Z<L
(1h)
where various dimensionless groups are given by

Y/a27

dimensionless transversal coordinate

R = xfa, or

Z = w,z/(ii,a?), dimensionless axial coordinate
UR) =ufa, i=12,
dimensionless velocity profiles

L = o, L*/ii,a?, dimensionless exchanger length
8(R.Z) = (T,-T)T.,-T.), i=12

dimensionless temperature profiles
R* = (a,+b)/(a,+b+a,),
K= (ki/k;)(a:/(a, +D)az/a)),

relative thermal resistance of fluids
K, = (k,/k,) In (1 +bfa),

relative thermal resistance of wall

aspect ratio

H = m,Cy/m, C,
= 2(p16:8)/(p iy}~ (arfa,) - ((a, +b)a,),

heat capacity flow rate ratio for the
limiting case of R* - 1. )

The dimensionless velocity profile of the inner
stream is obtained from

Ui(R) =2(1-R%) 3)

while the respective expression for the outer stream
[7], either for laminar or turbulent flow conditions, is
not in fact required within the present mixed lumped-
differential formulation.

The relative merits and limitations of the above
classical model are discussed in the earlier works of
Stein |2, 3]. A lumped formulation for the temperature
distribution in the outer channel was first proposed in
ref. [9], by integrating equation (1b) over the cross-
section @ < R < 1 and utilizing equation (1g) to yield
the following ordinary differential equation for the
bulk temperature in the annulus:

dglav{z) 2 561(17‘2)_
iz T =0 0<Z<L (4a)

where the heat capacity flow rate ratio is given by

* . TEE& — k_ﬁf
H 7. C H[l-&— TR* (4b)
with the inlet condition

Gra(l) = 1. (4c)

The problem formulation for the inner stream
becomes
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3,(R2) & Rae,(R,Z)
8Z  OR R ’

0<Z<L (5

RU\(R)

0<R<l,

with inlet and boundary conditions, respectively

8,(R,0)=0, 0SR<1 (5b)

9,0,2)

——a—k“““—* = 0, 0<Z < L (SC)
a6,(1, 2y

Kw +gl(1sz)=62,av(z): 0<Z‘<~L

R
(5d)

where in equation (5d) the basic assumption of
the lumping procedure was employed by letting
0,(1,2Z) =~ ¢,,,(Z), which corresponds to admitting
that temperature gradients are not so significant in
the radial direction within the annular region. Clearly,
the parameter that measures the relative thermal
resistances of the two streams, X, cancels out and, as
shown in ref. [12], the present formulation becomes
increasingly accurate for decreasing values of K.

Once a solution for system (4), (5) has been
obtained, quantities of practical interest can be com-
puted from their definitions [7, 12].

Average fluid temperature at the inner tube

Jl W,(R)0,(R, Z) dR
0

6 0(Z) = ; (6a)
J W, (R)dR
0
where
W (R) = RU,(R). (6b)
Local Nusselt number at the inner tube
5 06,(1,2)
IR
mOan-.s
Overall Nusselt number
,0.0.2) )
1 K _{ TR
NuO(Z) Nu‘(Z) 2 - 92.8\((2)_61.8\’(2)
(6d,¢)
Heat exchanger effectiveness
o(2)
82y = of
@=%.. 0
or
&Z) =0,,,(Z), forH*>=1 (6g)
0,..(Z
§2Z) = hn(@) H* <1 (6h)

H*
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where average fluid temperatures are related by

halZ) = 1+ [01 w(Z2)—0, (L)) (61)
Average overall Nusselt number
- 1 [
Nuy(L) = LJ Nuy(Z) dZ (6)
4]
or
l H* 1—0,,. (L
Nug(L) = [iogshn —W—"T‘ﬁk(ﬁ) (6k)
1— H* ()l.;lv(L)
and, for H* =1
I 0,,.(L)
o) = 4 25 ()

The ideas in the generalized integral transform tech-
nique [13-19] are now utilized to provide an analytical
solution to equations (5a)—(5d), with the coupling
equations for the outer stream bulk temperature,
equations (4a), (4c). Following the formalism in ref.
[12], the appropriate Graetz-type auxiliary eigenvalue
problem is taken as:

dl/l (R) 2 7 —
dR I:R*akj' +u; RU I(R)w:(R) =0, 0<R<I
(7a)
WO o, KD =0 (aho

which can be accurately and automatically solved
according to previous developments [12, 15], and
allows definition of the following integral transform
pair :

0,/(2) = N',— ﬁ RU(RW(R)Y,(R,Z) dR,

transform (8a)

“ 1 — . .
O (R.Z)=73 N3 Y(R)J,(Z), inversion (8b)
e i
where the norm is given by
i
N;:J RU (R (R) dR. 9
0
Equation (5a) is now operated on with
1 1
N J bR AR

and problem (7) is employed to yield, after utilizing
the boundary conditions at R = 1
d6,.(2) __ ! d‘/’(‘)

4z +H,20.u(z) = N2

0:.(Z),
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Equation (10) represents an infinite system of ordi-
nary differential equations for the transformed poten-
tials, 7, ,(Z), coupled with equations (4) through the
average temperature, (0, .. Equation (4a) is now
rewritten in terms of the transformed potentials to
cstablish the final relation with equation (10). There-
fore, an alternative expression for the derivative
20, (1. Z)/¢R is obtained by integrating equation (5a)
in the cross-section 0 < R < 1, to provide

0,(.2) & ~d0, (7)

AR q,hl 7 47 (Ha)

where

t
fi= f RU (RW,(R) dR. (11h)
, 0

Equation (l1la) is substituted back into equation
(4a) and equation (10) is utilized to produce the final
coupled system in normal form

d01,(2)
iz =170, (Z)+ 7 fi05., (2,
i=1.2,... (12a)
d0, ,(Z) ] )
2?17( - Z B, (Z)+ '* bf)z‘av(l) (12b)

with inlet conditions

F,0) =0, i=12.. (12¢)
00 (L) =1 (12d)
where
2 S
Bi=— s E= Z] Wi (12e.1)

For computational purposes, the denumerable sys-
tem (12) is truncated to a sufficiently large finite order,
N, and rewritten in matrix form as

V(Z)=Ay(Z). O0<Z <L (13a)
y(0)y=0, i=1.2,....1 N (13b)
YD)y =1 (13¢c)
where
¥(2) = 10,,(2),0,:(2),....0, (Z),0,,(D)}]
{13d)
~ . Q<N
w i< N j=N+1
A=14,;}. A,=9 B i=N+1Lj<N
2
H*E’ i=N+1Lj=N+1

(13e)

System (13) can be solved analytically in the form
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N+t

¥@) = L ol e

j=1

(14a)

where the matrix eigenvalues, /;, and corresponding
eigenvectors, {7, are obtained from the matrix eigen-
value problem

A—AD{=0 (14b)

and the constants, ¢;, are determined from satisfaction
of the inlet conditions, equations (12c), (12d), which
results in the following algebraic problem :

N+ 1

Y ol =0, i=1,2...,N

N+ 1
Y ol et =1 (14¢c)
j=1

Problems (14b), (14c) can be readily and accurately
solved through well established subroutines available
in scientific subroutine packages, such as the IMSL
library [21]. Alternatively, system (13) can be directly
solved by a boundary value problem solver such as
the routine DVCPR in the IMSL package. Once the
transformed potentials have been obtained, the inver-
sion formula (8b) is recalled to provide the complete
temperature distribution within the inner tube, while
the last component of the solution vector, yy, (Z),
provides the bulk temperature of the outer stream.

RESULTS AND DISCUSSION

Equations (4) and (5) were solved for various
different combinations of the governing parameters,
H*, L, K, and quantities of practical interest evalu-
ated according to their definitions, equations (6), for
a wide range of the dimensionless axial coordinate,
Z. The eigenfunction expansions were taken with a
sufficiently large number of terms, ¥, for convergence
to several digits in each situation, and the algebraic
problems in equations (14) were readily solved
through the appropriate software in the IMSL pack-
age [21], providing highly accurate final results.

Table 1 shows numerical results for the asymptotic
Nusselt numbers both for the inner stream alone and
overall, including the wall thermal resistance, accord-
ing to equation (6d). As the relative wall thermal
resistance is increased, as expected, the overall Nusselt
number decreases due to the added resistance, but
the internal convective heat transfer coefficient can
either increase, for H* > 1, or decrease, for H* < 1.
As the heat capacity flow rate ratio is increased,
the formulation of the Graetz problem with the
third kind boundary condition (or prescribed tem-
perature, for K, = 0) is asymptotically approached,
since d0,,,/dZ — 0, according to equation (4a), or
0,..(Z) > 1. The results for H* = 10 confirm such a
tendency, while the results for H* = 1 confirm the
observation in Nunge and Gill [8], that when the flow
rates and heat capacities are equal, a situation similar
to a Graetz problem with prescribed uniform heat flux
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Table 1. Asymptotic Nusselt numbers at both the inner tube
and overall for different heat capacity flow rate ratios and
relative wall thermal resistances

Nu,(Z > )
Nug(Z — )
H* =i, CoityCy, Ku=0  Ky=02 K,=04
1/10 10.126 Z;',?égg ;;gjg
1/3 5.8638 33333 géég
12 5109 S8 S
1 43636 3305 2330
2 3.9888 ‘2‘15333 3;??5
3 M Yl 2oem
10 30 Jike 399

is recovered. In this case, the average fluid tem-
peratures have essentially a linear variation along
the axial coordinate and reproduce, although only
asymptotically as will be clear in what follows, the H-
problem behavior.

Figure 2 presents the local Nusselt number dis-
tributions for the inner stream, within the thermal
entry region, for different values of H*, with K, =0
and L = 1. Also shown are the results for the Graetz
problem with prescribed temperature (7-problem)
and prescribed heat flux (H-problem). Clearly, the
T-problem results represent a lower bound for the
countercurrent double-pipe heat exchanger curves.
The H-problem curve merges with the curve for
H* =1 for sufficiently large axial distances, in the
asymptotic region, as indicated in Table 1. However,
within the thermal entry region these two curves are
quite apart from each other, and the H-problem solu-
tion cannot be utilized to approximate the double-
pipe heat exchanger with H* = 1, as suggested in ref.
[8]. This behavior could not be observed by Nunge
and Gill [8] due to the relatively low order of the
eigenfunction expansion employed. Also of interest is
the fact that the asymptotic region is reached within
a much shorter axial distance for the lower values of
H*, due to the more effective heat exchange.

The axial distributions of the interfacial wall tem-
perature are shown in Fig. 3 for both the counter-
current and concurrent flow configurations, with
K, =0, L = 1 and different values of A*. It is notice-
able that the uniform prescribed temperature bound-
ary condition is approached for both flow situations
as H* increases. Also, the axial wall temperature
gradients are more pronounced in the countercurrent
case, especially for lower values of H* and in the
region close to the annular stream inlet. This result
provides some indication that the effects of conjugated
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Local Nusselt number at the inner tube, Nu,(Z), along the thermal entry region (K, = 0; L = |).

F. Scorano Neto and R. M. CortTa

— —— — ——
—_— — —
* 10 = T
Nl
\

10

—
W%t
Ky =0
L =
countercurrent
------ concurrent
H."
T T T T U T T T T T T 1T TTT1] B T 1T 171
-3 -2 -1
10 10 1

Z =x2z/7.0°

F1G. 3. Interfacial wall temperature, 0,(1, Z), along the thermal entry region for both countercurrent and

concurrent configurations (K, = 0; L = 1).
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FiG. 4. Comparison of average Nusselt numbers for different heat exchanger lengths and heat capacity
flow rate ratios, with the correlation of Sieder and Tate (see ref. [20]) (X,, = 0).

wall heat transfer must be analyzed more closely in a
certain range of the parameter H*, in order to account
for longitudinal wall heat conduction [19].

In Fig. 4 we present numerical results for the aver-
age overall Nusselt number as a function of the dimen-
sionless heat exchanger length, L, and for different
values of the heat capacity flow rate ratio. Also shown
is a curve representing the correlation of Sieder and
Tate, recommended by Kern [20], which correlates to
+12% several experimental results for circular tubes
and different boundary conditions. The ranges for
each governing parameter covered by this expression,
according to the experiments considered, are pre-
sented in ref. [8]. As already discussed by Nunge and
Gill 8], this simple expression does not appropriatety
approach the asymptotic region, with ever decreasing
Nusselt numbers for increasing exchanger length.
Here, it is also apparent that for the smaller values of
L, this correlation again deviates considerably from
the theoretical predictions, which is probably due to
the very limited range of exchanger dimensionless
lengths covered by the experiments correlated, cen-
tered around the intermediate region. For larger L,
the deviations are more pronounced for decreasing
values of H*.

Heat exchanger effectivenesses, for both counter-
current and concurrent configurations, are presented

in Fig. 5 as a function of the dimensionless heat
exchanger length and for different values of H*. As
expected, the counterflow arrangement is seen to be
more effective in all cases considered, especially for
H* < 1, while the operation mode is not so relevant
in terms of effectiveness for smaller values of L, and
most noticeably for H* > 1. Effectiveness charts of
practical interest can be readily constructed, as briefly
demonstrated by Fig. 5, without prescribing con-
vective heat transfer coefficients.

Finally, it should be noted that the present results
are expected to be applicable within the range for the
relative thermal resistance of the fluids, K, recom-
mended in ref. [12] (K <0.1), since benchmark
results for the counterflow situation are not available,
so as to allow an inspection of the degree of approxi-
mation in the lumping procedure of the annular region
for different values of K. An examination of the
asymptotic results in ref. [8] confirms, to a certain
extent, this expectation.

The present approach is directly applicable to tur-
bulent flow in the outer stream and is sufficiently
straightforward to be extended to handle more
involved problems, such as in the cases of turbulent
internal flow, wall conjugation effects and transient
or periodic states. Other more complex geometries for
the outer region can also be studied, provided the
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Fic. 5. Comparison of heat exchanger effectiveness between countercurrent and concurrent configurations
for different exchanger lengths and heat capacity flow rate ratios (K, = 0).

lumped formulation is applicable, ie. tempera-
ture gradients can still be considered negligible in the
transversal direction within the external stream.

The analysis advanced here represents an inter-
esting alternative to purely numerical approaches,
which require costly iterative procedures to obtain
approximate solutions for such coupled counterflow
configurations, and adds to the various classes of
linear and non-linear convection—diffusion problems
now tractable through the integral transform method.
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ANALYSE D’UN ECHANGEUR DE CHALEUR A DEUX TUBES EN CONTRECOURANT
A L’AIDE D’UNE FORMULATION MIXTE CELLULAIRE-DIFFERENTIELLE

Résumé—On analyse les échangeurs de chaleur & deux tubes concentriques dans des conditions
d’écoulements 4 contre-courant en développement. On emploie une formulation mixte différentielle et
cellulaire en zonant radialement le champ de température dans le canal extérieur, ce qui conduit & une con-
dition aux limites mieux impliquée pour le systeme différentiel interne et rend compte de la variation axiale
de la température de mélange dans le canal externe. On obtient une solution analytique directe de cette
classe de problémes. Des résultats numériques pour les grandeurs thermiques sont présentés en fonction
des paramétres adimensionnels actifs le long de la région d’entrée thermique, permettant des comparaisons
avec la situation de co-courant, les solutions limites et les formules pratiques.

UNTERSUCHUNG EINES DOPPELROHR-GEGENSTROMWARMETAUSCHERS MIT
HILFE EINER GEMISCHTEN KONZENTRIERT/DIFFERENTIELLEN
FORMULIERUNG

Zusammenfassung—Doppelrohr-Wirmeaustauscher werden fiir den Fall einer thermisch nicht ent-
wickelten Gegenstromung untersucht. Es wird eine gemischte konzentriert/differentielle Formulierung
angewandt, bei der das Temperaturfeld im duBeren Kanal kreisférmig konzentriert wird. Daraus ergibt
sich eine kompliziertere Randbedingung fiir das innere Differentialgleichungssystem, wobei eine Ande-
rung der Temperatur im duBeren Kanal in axialer Richtung einbezogen ist. Um zu einer verldBlichen
und unkomplizierten analytischen Losung zu gelangen, wird cine allgemein giiltige Integrationstechnik
angewandt. Die numerischen Ergebnisse fiir die WiarmetibertragungsgroBen werden anhand der dimen-
sionslosen maBgeblichen Parameter lings des thermischen Einlaufgebiets dargestellt, was einen kritischen
Vergleich mit der Gegenstromsituation mit Grenzfillen sowie mit ingenieurméBigen Korrelationen zuldBt.

AHAJIN3 MPOTUBOTOYHOI'O ABYXTPYBYATOI'O TEIINIOOBMEHHHKA C
WICTIOJIL30BAHUEM KYCOYHO-ITEPEMEHHON ®OPMVJIMPOBKH

AHBOTAaINS—AHAJIM3HPYIOTCS ABYXTPYGHaThle TEIIOOGMEHHHKH B YCIOBHAX TEPMHYECKH Pa3BHBAIO-
uxcs npoTHBoTOKOB. Hcnonbayerca ¢opMynapoBka, B KOTOPO#H TEMMepaTypHOE II0JIE BO BHEINHEM
KaHajie B paJfaJbHOM HAalpPaBICHHH MPCACTABAAETCA B BHAE KYCOYHO-TIEPEMEHHON QyHKUHMH, 4TO OpH-
BOIHT K GoNee CJI0KHOMY IPaHHYHOMY YCJIOBHIO [UIA BHYTPEHHEH CHCTEMBI, COACpPKAILEMY AKCHAIBHO
H3MEHSIOLIYIOCS CPEAHEMACCOBYIO TEMIIEpaTypy BHEIIHEro KaHana. C Le/ibio NOMyYeHAs HAJEKHOTO H
OpsSMOro aHAJHTHYECKOro PEIICHHA JaHHOTO KJacca 3af1ad MPHAMEHSETCS MeTOR 0806IEHHbIX HHTErpa-
JIBHBIX npeobpa3opanmii. YHCIEHHBIE Pe3y/IbTaTH AT XapaKTEPHCTHK TEILUIONEPEHOCA BIOMLIb BXOI-
HOTO TEIUIOBOTO YYacTKa NPHBOIATCA MOCPEACTBOM Ge3pa3sMEpHBIX ONMpPEAEIISIONX NapaMeTpoB, YTO
MO3BOJIAET NPOBECTH CPABHEHHE CO CIYyYaeM CYTHBIX TOTOKOB.
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