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Abstract-An analysis is made of double-pipe heat exchangers under a thermally developing countercurrent 
flow condition. A lumpeddifferential mixed formulation is employed, by radially lumping the temperature 
field in the outer channel, which results in a more involved boundary condition for the inner differential 
system, involving the axially varying outer channel bulk temperature. The generalized integral transform 
technique is utilized to provide a reliable and straightforward analytical solution to this class of problems. 
Numerical results for heat transfer quantities are presented in terms of the dimensionless governing 
parameters along the thermal entry region, allowing for critical comparisons against the concurrent flow 

situation, limiting solutions and engineering-type correlations. 

INTRODUCTION 

DOUBLE-PIPE heat exchangers are commonly used 
devices in thermal engineering practice, especially in 
connection with relatively small exchange area 
requirements, pressurized systems and laboratory set- 
ups [l], due to their simple construction and main- 
tenance characteristics. Stein [2, 31 appears to be the 
first investigator to formulate such a class of problems 
and attempt an analytical solution to the two govern- 

ing energy equations coupled at the boundary con- 
ditions. For the concurrent laminar flow situation, 
under a hydrodynamically fully developed condition, 
a number of contributions followed [4-71 that 
employed eigenfunction expansion-type approaches 
and, particularly after the advancement of an auto- 
matic and reliable solution technique for the related 
eigenvalue problem [7], filled the gap between Stein’s 
pioneering work and the present need for accurate 
reference results in heat exchanger design. For coun- 
terflow situations, however, the utilization of such 
approaches is not a trivial matter, due to the more 
involved auxiliary eigenvalue problem which results 
from the coupled nature between inlet and exit stream 
temperatures, as demonstrated through the efforts of 
Nunge and Gill [8]. Therefore, an alternative sim- 
plified formulation was proposed by Stein and Sastri 
[9], which radially lumps the temperature distribution 
in the outer annular channel and maintains the partial 
differential formulation for the inner tube. As a result, 
the interface condition incorporates the bulk tem- 
perature of the outer channel, providing a more 

t Permanent address : Se+o de Engenharia Mecanica e de 
Materiais, Instituto Militar de Engenharia, IME, Rio de 
Janeiro, RJ, Brazil. 

general boundary condition for the single partial 
differential equation that governs the inner tube 
temperature distribution. An approximate solution 
for this formulation was then obtained, based on the 

Laplace transform technique, and applied in sub- 
sequent developments [IO, 1 l] for both concurrent 
and countercurrent flow configurations. It was not 
until quite recently [12] that applicability limits for 
this simplified formulation were established, in terms 

of the governing dimensionless parameters, through 
a critical comparison with the benchmark results 
available for concurrent flow [7] along the thermal 
entry region. Also in ref. [12], the exact analytical 
solution for the mixed lumped-differential formula- 
tion of concurrent flow double-pipe heat exchangers 
is provided, by extending the ideas in the generalized 
integral transform technique [13-191, as applied to a 
priori non-transformable diffusion/convection prob- 
lems. In the present contribution, the formalism 
in ref. [12] is extended for the counterflow situa- 
tion, allowing for the establishment of heat transfer 
results in a wide range of governing parameters 
such as exchanger length, heat capacity flow rate ratio, 
relative thermal resistance of the interface and dimen- 
sionless axial coordinate. Numerical results for the 
quantities of practical interest are then presented, 
including bulk temperatures, Nusselt numbers and 
exchanger effectiveness. Since a very limited number 
of works were previously concerned with counter- 
current flow, we take advantage of the present reliable 
approach to examine more carefully different aspects 
related to this important configuration, such as com- 
parisons with concurrent flow results, with limiting 
situations of prescribed wall temperature and heat 
flux, and with an engineering-type correlation for 
the heat transfer coefficient in double-pipe heat 
exchangers [20]. 
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NOMENCLATURE 

inner and outer tube radii, Greek symbols 
k= I.2 xi thermal dj~usivities, k = 1. :! 
interfacial wall thickness 0, (R, Z) temperature distributions, 
specific heats of inner and outer fluids, dimensionless, k = 1, 2 
k= I,2 

thermal conductivities of inner and outer 
fluids, k = I. 2 

exchanger length, dimensional 
mass flow rates, k = 1, 2 

dimensionless radial coordinate 

temperature distributions, dimensional, 
k= 1.2 
inlet temperatures, dimensional, k = I, 2 

velocity profiles, dimensional, k = 1, 2 
average velocities. k = I, 2 

II,,,.,(%) bulk temperatures, dimensionless, 
k= 1,2 

L eigenvalues of matrix A, equation (14b) 

11 eigenvalues of SturmPLiouville problem, 
equations (7) 

Pi densities, k = 1. 2. 

Subscripts 
av average 
I inner stream 
2 outer stream 

U,(R) velocity profiles, dimensionless, 
k= 1.2 

.V or 1 transversal coordinate, dimensional 

z 
axial coordinate, dimensional 
axial coordinate, dimensionless. 

W interfacial wall 

i, i order of eigenvalue. 

Superscript 

integral transformed quantity. 

ANALYSIS Outer annular channel 

In order to demonstrate the lumping procedure 
at the outer annular channel, we start from the KH [l _ E( f _ R*)] u,(R) ?+$? ‘1 

- 2 
fully differentiai formulation for a double-pipe heat 

exchanger in dimensionless form [7, 121, written for a 
counterflow configuration. Laminar flow is assumed = ;; (1 _R(l _,*))!?.;;z! , 

at both tube and shell sides for derivation purposes, 
i I 

but the formulation to be obtained is directly appli- O<R<l, O,<%<L (Ib) 
cable to turbulent flow at the annular region. Accord- 

ing to the coordinate system presented in Fig. 1. the with inlet conditions at opposite ends 

problem formulation, assuming constant physical 
properties and hydrodynamically fully developed 
flow, is given by : 

if,(R,O) = 0, O,(R,L) = i. 0 < R < 1 (Ic,d) 

and boundary conditions 

Inner tube 

O<R<l. 0 i Z < L (la) 
--~~ =o. O<ZGL (lg) 

.insulated 

0 ._.-.-.-.-. 

FK;. t Geometry and coordinate system for double-pipe heat exchanger analysis 
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K a@,(l,z> 
w ~ +B,(l,Z)-B,(l,Z) = 0, 

aR 
0 < z< L 

where various dimensionless groups are given by 

R = x/a, or y/az, 

dimensionless transversal coordinate 

2 = 01, -_/(~,a& dimensionless axial coordinate 

U,(R) = ~i/~i, i= 1,2, 

dimensionless velocity profiles 

L = a,L*/u,a:, dimensionless exchanger length 

&(R,Z) = (~-~,)/(~~-~,), i= 1,2 

dimensionless temperature profiles 

R* = (a, +b)/(a, 4h+a,), aspect ratio 

K= (~,~~~)(U,i(~, +b))(@,), 

relative thermal resistance of fluids 

KW = (~,/~~) In (l+b/a,), 

relative thermal resistance of wall 

heat capacity flow rate ratio for the 
limiting case of R* -+ 1. (2) 

The dimensionless velocity profile of the inner 
stream is obtained from 

U,(R) = 2(1 -R2) (3) 

while the respective expression for the outer stream 
[7], either for laminar or turbulent flow conditions, is 
not in fact required within the present mixed lumped- 
differential formulation. 

The relative merits and limitations of the above 
classical model are discussed in the earlier works of 
Stein [2,3]. A lumped formulation for the temperature 
distribution in the outer channel was first proposed in 
ref. [9], by integrating equation (Ib) over the cross- 
section 0 < R < 1 and utilizing equation (lg) to yield 
the following ordinary differential equation for the 
bulk temperature in the annulus : 

d@.dZ) 2 a@,(l,z) 
-_-~--- ----=O, O<.Z<L (ha) 

dZ H” aR 

where the heat capacity flow rate ratio is given by 

with the inlet condition 

%B”(LI = 1. @W 

The problem formulation for the inner stream 
becomes 

0-c R< 1, O<ZG L (5a) 

with inlet and boundary conditions, respectively 

t?,(R,O)=O, O<RSl (5b) 

83, (0, Z) 
____-.-- = 0, 

dR 
0 < 2 < L (54 

K a@,(kZ> 
w ~ +Q,(l,z) = @z,,,(Z), 

aR 
0 < ZG L 

(54 

where in equation (Sd) the basic assumption of 
the lumping procedure was employed by letting 
d,(l,.Z) ~1 I~~,~~(Z), which corresponds to admitting 
that temperature gradients are not so significant in 
the radial direction within the annular region. Clearly, 
the parameter that measures the relative thermal 
resistances of the two streams, K, cancels out and, as 
shown in ref. [12], the present formulation becomes 
increasingly accurate for decreasing values of K. 

Once a solution for system (4), (5) has been 
obtained, quantities of practical interest can be com- 
puted from their definitions [7, 121. 

Average fluid temperature at the inner tube 

W, (R)@ I CR Z> dR 

s 

, 

W, ($1 dR 
0 

where 

W,(R) = RU, (R). 

Local Nusselt number at the inner tube 

W 

(W 

Overall Nusselt number 

Heat exchanger effectiveness 

E(Z) = $0 
max 

or 

64 4 

(6f) 

E(Z) = B,,,(Z), for H* 3 I 

81 W(Z) 
e(Z)=---+, forH*<I 

(6g) 

(6h) 
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where average fluid temperatures are related by 

Average overall Nusselt number 

/vu,,(L) = 1 Nu,,(Z) dZ 

or 

(6.i) 

(6k) 

and, for H* = I 

The ideas in the generalized integral transform tech- 
nique [ 13-191 are now utilized to provide an analytical 
solution to equations (5a)-(5d), with the coupling 

equations for the outer stream bulk temperature, 
equations (4a), (4~). Following the formalism in ref. 
[ 121, the appropriate Graetz-type auxiliary eigenvalue 
problem is taken as : 

ddi d;I;p +~~;RC’,(R)I),(R) = 0, 0 < R < I 
[ I 

(7a) 

$&CO, = o. K W,(l) 
dR ’ w r +$,(I) = 0 (7b,c) 

which can be accurately and automatically solved 
according to previous developments [12, 151, and 
allows definition of the following integral transform 

pair: 

CT,.,(Z) = -L 
I’ N,” ,j 

RCJ, (R)ti,(R)B, (R, Z) dR, 

transform (8a) 

0, (R Z) = <$, .‘,I tiAR)~,.,(Z). inversion (Sb) 

where the norm is given by 

N, = I’ RU,(R)$;(R) dR. (9) 
,I 

Equation (Sa) is now operated on with 

’ $AR) dR 

and problem (7) is employed to yield, after utilizing 
the boundary conditions at R = 1 

Equation (10) represents an infinite system of ord- 
nary differential equations for the transformed poten- 
tials, o,.,(Z). coupled with equations (4) through the 
average temperature, I),,,,. Equation (4a) is nou 
rewritten in terms of the transformed potentials to 
establish the final relation with equation (I 0). Thcrc- 
fore, an alternative expression for the dcrivativc 

(70, (I. Z),‘iR is obtained by integrating equation (5a~ 
in the cross-section 0 < R < 1. to provide 

whcrc 

?O,(l,Z) 
_;_i: 

dii,,,(%) 

iR ;L,.’ d7 
(1 12) 

r; = @‘, 2 
I J’ 

R&(R)+,(R) dR. (I lb) 
0 

Equation (I la) is substituted back into equation 

(4a) and equation (I 0) is utilized to produce the final 
coupled system in normal form 

doyg) = i B,&,(Z)+ $EO,,,,(Z) (12b) 
i I 

with inlet conditions 

(1,,,(O) =o. i= I,2 . . . . (IZC) 

where 

(12d) 

For computational purposes. the denumerable sys- 

tem (12) is truncated to a sufficiently large finite order. 
N, and rewritten in matrix form as 

y’(Z) = Ay(Z). 0 cc % < z, (l3a) 

where 

J:(o) = 0, i = I 

?‘.V + I CL) = 

y(z) = ~cr,.,(z),(r,.2(Z), 

A = [A,,), A,, = B,, 

2. N (13b) 

I (I3c) 

~,.\(Z)>(),.,,(Z)jT 

( 13d) 

i,j<.h’ 

i<,Y.j=A’+l 

i= !V+l.j< 3 

i= .v+1.j= .v+i. 

(I&) 

System (13) can be solved analytically in the form 
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IV+1 

y(Z) = C c,P e”!’ 
j= I 

(144 

where the matrix eigenvalues, li, and corresponding 
eigenvectors, lcn, are obtained from the matrix eigen- 
value problem 

(A - U)j = 0 (l4b) 

and the constants, c,, are determined from satisfaction 
of the inlet conditions, equations (12c), (12d), which 
results in the following algebraic problem : 

IV+1 

,c, 4" = 0, i= 1,2,...,N 

N+I 

c 
1.J. 

c,(jy/!+, ej = 1. (l4c) 
,= I 

Problems (14b), (14c) can be readily and accurately 
solved through well established subroutines available 
in scientific subroutine packages, such as the IMSL 
library [21]. Alternatively, system (13) can be directly 
solved by a boundary value problem solver such as 
the routine DVCPR in the IMSL package. Once the 
transformed potentials have been obtained, the inver- 
sion formula (Sb) is recalled to provide the complete 
temperature distribution within the inner tube, while 
the last component of the solution vector, yN+ , (Z), 
provides the bulk temperature of the outer stream. 

RESULTS AND DISCUSSION 

Equations (4) and (5) were solved for various 
different combinations of the governing parameters, 
H*, L, K, and quantities of practical interest evalu- 
ated according to their definitions, equations (6), for 
a wide range of the dimensionless axial coordinate, 
2. The eigenfunction expansions were taken with a 
sufficiently large number of terms, N, for convergence 
to several digits in each situation, and the algebraic 
problems in equations (14) were readily solved 
through the appropriate software in the IMSL pack- 
age [21], providing highly accurate final results. 

Table 1 shows numerical results for the asymptotic 
Nusselt numbers both for the inner stream alone and 
overall, including the wall thermal resistance, accord- 
ing to equation (6d). As the relative wall thermal 
resistance is increased, as expected, the overall Nusselt 
number decreases due to the added resistance, but 
the internal convective heat transfer coefficient can 
either increase, for H* > 1, or decrease, for H* < 1. 
As the heat capacity flow rate ratio is increased, 
the formulation of the Graetz problem with the 
third kind boundary condition (or prescribed tem- 
perature, for K, = 0) is asymptotically approached, 
since d0,JdZ + 0, according to equation (4a), or 
Q,,,,(Z) -+ 1. The results for H* = 10 confirm such a 
tendency, while the results for H* = 1 confirm the 
observation in Nunge and Gill [8], that when the flow 
rates and heat capacities are equal, a situation similar 
to a Graetz problem with prescribed uniform heat flux 

Table 1. Asymptotic Nusselt numbers at both the inner tube 
and overall for different heat capacity flow rate ratios and 

relative wall thermal resistances 

H* = ti2C2/ljl,C, K, = 0 K, = 0.2 K, = 0.4 

l/l0 10.126 
7.9499 7.1047 
4.4289 2.9346 

113 5.8638 
5.3540 5.1148 
3.4870 2.5283 

112 5.1109 
4.8718 4.7500 
3.2758 2.4358 

1 4.3636 
4.3636 4.3636 
3.0379 2.3300 

2 3.9888 
4.1039 4.1632 
2.9097 2.2717 

3 3.871 I 4.0172 4.0954 
2.8859 2.2513 

10 3.7150 
3.8960 4.0000 
2.8086 2.2222 

is recovered. In this case, the average fluid tem- 
peratures have essentially a linear variation along 
the axial coordinate and reproduce, although only 
asymptotically as will be clear in what follows, the H- 
problem behavior. 

Figure 2 presents the local Nusselt number dis- 
tributions for the inner stream, within the thermal 
entry region, for different values of H*, with K, = 0 
and L = 1. Also shown are the results for the Graetz 
problem with prescribed temperature (T-problem) 
and prescribed heat flux (H-problem). Clearly, the 
T-problem results represent a lower bound for the 
countercurrent double-pipe heat exchanger curves. 
The H-problem curve merges with the curve for 
H* = 1 for sufficiently large axial distances, in the 
asymptotic region, as indicated in Table 1. However, 
within the thermal entry region these two curves are 
quite apart from each other, and the H-problem solu- 
tion cannot be utilized to approximate the double- 
pipe heat exchanger with H* = 1, as suggested in ref. 
[8]. This behavior could not be observed by Nunge 
and Gill [8] due to the relatively low order of the 
eigenfunction expansion employed. Also of interest is 
the fact that the asymptotic region is reached within 
a much shorter axial distance for the lower values of 
H*, due to the more effective heat exchange. 

The axial distributions of the interfacial wall tem- 
perature are shown in Fig. 3 for both the counter- 
current and concurrent flow configurations, with 
K, = 0, L = 1 and different values of H*. It is notice- 

able that the uniform prescribed temperature bound- 
ary condition is approached for both flow situations 
as H* increases. Also, the axial wall temperature 
gradients are more pronounced in the countercurrent 
case, especially for lower values of H* and in the 
region close to the annular stream inlet. This result 
provides some indication that the effects ofconjugated 
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! 
K,=O 

T \ 
L =I 

8.50 

3.50 

10 
-3 -2 --I 

10 

FIG. 2. Local Nusselt number at the inner tube, Nu, (Z). along the thermal entry region (K, =: (‘I; L = I) 

0.95 

0.75 

N 

5 0.55 

0 35 

0.15 

_ countwcurwnt 

10 -’ 10 --z 10 -I 1 

z =tiz 1u.a’ 

FIG. 3. Interfacial wall temperature, fl ,(l, Z), along the thermal entry region for both countercurrent and 
concurrent configurations (K, = 0; L = 1). 
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8.00 
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FIG. 4. Comparison of average Nusselt numbers for different heat exchanger lengths and heat capacity 
flow rate ratios, with the correlation of Sieder and Tate (see ref. [20]) (& = 0). 

wall heat transfer must be analyzed more closely in a 
certain range of the parameter H*, in order to account 
for longitudinal wall heat conduction [19]. 

In Fig. 4 we present numerical results for the aver- 
age overall Nusselt number as a function of the dimen- 
sionless heat exchanger length, L, and for different 
values of the heat capacity flow rate ratio. Also shown 
is a curve representing the correlation of Sieder and 
Tate, recommended by Kern [20], which correlates to 
f 12% several experimental results for circular tubes 
and different boundary conditions. The ranges for 
each governing parameter covered by this expression, 
according to the experiments considered, are pre- 
sented in ref. [8]. As already discussed by Nunge and 
Gill [8], this simple expression does not appropriately 
approach the asymptotic region, with ever decreasing 
Nusselt numbers for increasing exchanger length. 
Here, it is also apparent that for the smaller values of 
L, this correlation again deviates considerably from 
the theoretical predictions, which is probably due to 
the very limited range of exchanger dimensionless 
lengths covered by the experiments correlated, cen- 
tered around the intermediate region. For larger L, 
the deviations are more pronounced for decreasing 
values of H*. 

Heat exchanger effectivenesses, for both counter- 
current and concurrent configurations, are presented 

in Fig. 5 as a function of the dimensionless heat 
exchanger length and for different values of H*. As 
expected, the counterflow arrangement is seen to be 
more effective in all cases considered, especially for 
H* < 1, while the operation mode is not so relevant 
in terms of effectiveness for smaller values of L, and 
most noticeably for H* > 1. Effectiveness charts of 
practical interest can be readily constructed, as briefly 
demonstrated by Fig. 5, without prescribing con- 
vective heat transfer coefficients. 

Finally, it should be noted that the present results 
are expected to be applicable within the range for the 
relative thermal resistance of the fluids, K, recom- 
mended in ref. [12] (K < O.l), since benchmark 
results for the counterflow situation are not available, 
so as to allow an inspection of the degree of approxi- 
mation in the lumping procedure of the annular region 
for different values of K. An examination of the 
asymptotic results in ref. [8] confirms, to a certain 
extent, this expectation. 

The present approach is directly applicable to tur- 
bulent flow in the outer stream and is sufficiently 
straightforward to be extended to handle more 
involved problems, such as in the cases of turbulent 
internal flow, wall conjugation effects and transient 
or periodic states. Other more complex geometries for 
the outer region can also be studied, provided the 
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Ii,=0 

- ccunt*rcurrtnt 
_____ cwcurrtnt 

L 

FIG. 5. Comparison of heat exchanger effectiveness between countercurrent and concurrent configurations 
for different exchanger lengths and heat G3paCity flow rate ratios (K,, = 0). 

lumped formulation is applicable, i.e. tempera- 
ture gradients can still be considered negligible in the 
transversal direction within the external stream. 

The analysis advanced here represents an inter- 
esting alternative to purely numerical approaches, 
which require costly iterative procedures to obtain 
approximate solutions for such coupled counterflow 
COnfigUmtiOnS, and adds to the various classes of 
linear and non-linear convection4iffusion problems 
now tractable through the integral transform method. 
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ANALYSE D’UN ECHANGEUR DE CHALEUR A DEUX TUBES EN CONTRECOURANT 
A L’AIDE DUNE FORMULATION MIXTE CELLULAIRE-DIFFERENTIELLE 

R&&--On analyse les echangeurs de chaleur a deux tubes concentriques dans des conditions 
d%coulements a contre-courant en developpement. On emploie une formulation mixte differentielle et 
cellulaire en zonant radialement le champ de temperature dans le canal exterieur, ce qui conduit a une con- 
dition aux limites mieux impliquee pour le systeme differentiel interne et rend compte de la variation axiale 
de la temperature de melange dans le canal externe. On obtient une solution analytique dire&e de cette 
classe de probltmes. Des resultats numtriques pour les grandeurs thermiques sont present&s en fonction 
des parametres adimensionnels actifs le long de la region d’entree thermique, permettant des comparaisons 

avec la situation de co-courant, les solutions limites et les formules pratiques. 

UNTERSUCHUNG EINES DOPPELROHR-GEGENSTROMWARMETAUSCHERS MIT 
HILFE EINER GEMISCHTEN KONZENTRIERT/DIFFERENTIELLEN 

FORMULIERUNG 

Zusammenfaas~g-Doppelrohr-Warmeaustauscher werden fur den Fall einer thermisch nicht ent- 
wickelten Gegenstriimung untersucht. Es wird eine gemischte konzentriert/differentielle Formulierung 
angewandt. bei der das Temperaturfeld im augeren Kanal kreisformig konzentriert wird. Daraus ergibt 
sich eine kompliziertere Randbedingung fiir das innere Differentialgleichungssystem, wobei eine Ande- 
rung der Temperatur im iiul3eren Kanal in axialer Richtung einbezogen ist. Urn zu einer verlIBlichen 
und unkomplizierten analytischen Liisung zu gelangen. wird eine allgemein gilltige Integrationstechnik 
angewandt. Die numerischen Ergebnisse fur die Wlrmeiibertragungsgr6Den werden anhand der dimen- 
sionslosen maggeblichen Parameter langs des thermischen Einlaufgebiets dargestellt, was einen kritischen 
Vergleich mit der Gegenstromsituation mit Grenzfallen sowie mit ingenieurmlBigen Korrelationen zulLl3t. 

AHAJIM3 fIPOTHBOT09HOI-0 flBYXTPY6sATOFO TEI-LJIOOEMEHHHKA C 
MCI-IOJIbBOBAHHEM KYCOrIHO-IIEPEMEHHOR 0OPMYJIkIPOBKH 

Au11o~auns-A~an~3Hpyro~cn neyxrpy6qarbte rennoo6Memmxn B ycrrosnnx TepMHYeCKH passaeam- 

WXCR ~~oTHBoTOK~B. kicnonbsyercn I$o~M~JII~~oBK~, B ~0T0p0fi TemepaTypHoe none BO memeM 

KX%Ule B p~aJlbHOb4 HalIpWSJIeHHH II~WTaBJIETCK B BHne KyCOVHO-IIepMeHHOii ~yHKWiH,YTO IIpEi- 

BOAUT K 6onee CJIOKCHOMy TpaHWiHOMy yCJIOBHI0 JJJIK BHylpeHHeti CEiCreMbI,CO~~K~arUebty aKCUiUlbH0 

HsbfeHmorrryrocn cpemerdamoeym TemepaTypy nfiemiero KaHana. C uenbm nonyvem tianemioro N 

~KMO~OaH~HTH~~KO~O~~e~K~~HO~ORnaCC~3~a~~pHMeHReTcKMeTOAo6o6UIeHHbIxHHTe~a- 

JIbHblX ll~O6pa3OBaliHii. 9HCJleHHble pe3yJIbTaTbl lJJlJl XapZWiTepHCTHK TellJlOlIe~HOCa BnOAJIb BXOLI- 

uoro rennonoro yvacrza np~~0mTcK nocpencrnob4 6espaaMepnbrx onpenenaronnix napahlerpoe, 9ro 
llO3BOJlIleTllpOE%WTHCpaBHeHHeCOCJIy'IaeMCl9'THblXIIOTOKOB. 


